miércoles, 21 de septiembre de 2011

2.1.1.-TIPOS DE SISTEMAS POR SU ORIGEN

Los sistemas, en cuanto a su origen, pueden clasificarse en naturales, hechos por el hombre e hibridos. Entre los sistemas naturales pueden citarse, por ejemplo, un carro, una escuela, un sistema educativo, el sistema decimal, una universidad; como sistema hibrido, el cual proviene de una combinación de los anteriores, puede citarse el caso de una planta hidroeléctrica.
Por su naturaleza, los sistemas pueden ser conceptuales o concretos. Los conceptuales están formados por objetivos que existen en el espacio y en el tiempo, como un sistema gramático, un sistema filosófico; en tanto que el grupo de sistemas concretos llenan la realidad, como una roca, una clase en el aula, un sistema cilíndrico.
En cuanto a su funcionamiento, puede hablarse de sistemas abiertos y cerrados. Un sistema abierto intercambia materia y energía con el ambiente. Por ejemplo, un árbol recibe materia y energía (insumos o corrientes de entradas) a partir del aire y del suelo, pero a su vez entrega oxigeno al ambiente (productos o corrientes de salida), a parte de otros elementos como las flores, los frutos, madera, belleza, aromas, entre otros. La corriente de entrada que recibe un sistema es procesada por el mismo, y parte la devuelve al medio o entorno y parte la conserva para combatir la entropía, es decir, mantener un estado vital dinámico.
Un sistema cerrado puede ser caracterizado, al menos teóricamente, como auto-suficiente, lo cual significa que no afecta ni es afectado por otros sistemas ni por el ambiente. En este sentido, podría hablarse de un termostato como un sistema cerrado. Pero en teoría, este tipo de sistema no existe, pues al no intercambiar materia ni energía con otros sistemas con el ambiente, cae en entropía o estado mortal. Posiblemente el universo, en el caso de que tuviera limites en el espacio, vendria a ser un ejemplo de sistema cerrado. Pero aun no esta comprovado.
Todo sistema abierto tiende a ser cerrado, en la medida que no intercambie materia ni energía con el ambiente o con otros sistemas. Existe una tendencia natural en los sistemas hacia la entropía, el desorden total, el cual es el estado más probable de las cosas en su estado original. Por ejemplo, si una casa no recibe mantenimiento permanente y se le deja sola por algún tiempo, ira cayendo progresivamente en entropía observable a través de la basura, polvo telarañas y otros daños. Igual cosa sucede con los sistemas educativos. Su falta de control, de actualización en los docentes, de mantenimientos de las escuelas, entre otros, hacen que vayan decayendo su estado vital dinámico. Los sistemas abiertos combaten la entropía evolucionando hacia una orden, una diferenciación, una variación y un grado de complejidad cada vez mayor.
En cuanto a su organización, se habla de sistemas, sub-sistemas y suprasistemas. Esto quiere decir que existen niveles o recursividad entre ellos. La escuelas un sistema, pero a su vez esta formada por sus partes integrantes o sub-sistemas, los cuales en si pueden ser también tratados como sistemas, dependiendo del sistema de interés que esté en nuestra mira.

2.5.2.-TAXONOMIA DE CHECKLAND

Según Checkland las clasificaciones u ordenamiento por clases de los sistemas son las siguientes:
• Sistemas Naturales: es la naturaleza, sin intervención del hombre, no tienen propósito claro.

• Sistemas Diseñados: son creados por alguien, tienen propósito definido. Ejemplo un sistema de información, un carro.

• Sistemas de Actividad Humana: contienen organización estructural, propósito definido. Ejemplo: una familia.

• Sistemas Sociales: son una categoría superior a los de actividad humana y sus objetivos pueden ser múltiples y no coincidentes. Ejemplo: una ciudad, un país.


• Sistemas Transcendentales: constituyen aquello que no tiene explicación. Ejemplo: Dios, metafísica.

El sistemista inglés Peter Checkland señaló hace más de 40 años que: “lo que necesitamos no son grupos interdisciplinarios, sino conceptos transdisciplinarios, o sea conceptos que sirvan para unificar el conocimiento por ser aplicables en áreas que superan las trincheras que tradicionalmente delimitan las fronteras académicas”

Veamos un ejemplo: Son numerosas las entidades naturales que poseen reguladores - también naturales - de algunos de sus procesos o funciones. Nosotros mismos, como seres biológicos, tenemos diversas regulaciones, por ejemplo en el caso de nuestra presión sanguínea, de nuestra temperatura corporal, de nuestro ritmo respiratorio y cardíaco, del nivel glucémico en la sangre, etc…

Regulaciones similares - y los dispositivos correspondientes - existen en todos los seres vivientes (animales y vegetales), que deben adaptarse y readaptarse sin cesar, a condiciones variables de entorno y de equilibrio interno.

Todos los reguladores tienen el mismo mecanismo básico, o sea la retroacción por retroalimentación (el “feedback”) del efecto resultante del proceso, observado y medido en cada instante, sobre el ritmo de la función o del proceso mismo.

Por ejemplo, el corazón está equipado con un dispositivo nervioso acelerador o frenador que responde a la percepción orgánica de la presión sanguínea. En síntesis, el principio del feedback es absolutamente general: se trata de la regularización de la actividad (función, proceso) por los resultados de la misma y en correspondencia con una norma existente naturalmente, o establecida por un agente.

En este caso de los controles, o sea las regulaciones creadas por el hombre, la “norma” es introducida por el contralor humano en función de un criterio razonado referido a la meta buscada. Un ejemplo muy conocido es el termostato. Otro es el rol del flotador en el tanque de agua del baño.

El concepto de retro-alimentación (feedback) es por lo tanto un meta-concepto: Reúne las características comunes de múltiples ejemplos específicos de retro-alimentación.

2.5.1.-TAXONOMIAS DE BUILDING

Bulding plantea que debe haber un nivel en el cual una teoría general de sistemas pueda alcanzar un compromiso entre “el especifico que no tiene significado y lo general que no tiene contenido”. Dicha teoría podría señalar similitudes entre las construcciones teóricas de disciplinas diferentes, revelar vacíos en el conocimiento empírico, y proporcionar un lenguaje por medio de el cual los expertos en diferentes disciplinas se puedan comunicar entre si.
El presenta una jerarquía preliminar de las “unidades” individuales localizadas en estudios empíricos del mundo real, la colocación de ítems de la jerarquía viéndose determinada por su grado de complejidad al juzgarle intuitivamente y sugiere que el uso de la jerarquía esta en señalar los vacíos en el conocimiento y en el servir como advertencia de que nunca debemos aceptar como final un nivel de anales teórico que este debajo del nivel del mundo empírico.
El método de enfoque de Boulding es el comenzar no a partir de disciplinas del mundo real, sino a partir de una descripción intuitiva de los niveles de complejidad que el subsecuentemente relacionado con las ciencias empíricas diferentes.

ENSAYO DE LOS SUBTEMAS 2.3.-CARACTERISTICAS GENERALES DE LOS SISTEMAS Y DEL SUBTEMA 2.4.-IDEAS PARTICULARES DE LOS SISTEMAS

2.3.-CARACTERÍSTICAS GENERALES DE LOS SISTEMAS



A los sistemas los podemos identificar por diferentes características como por ejemplo por los elementos que son los componentes de cada sistema paro estos también pueden ser sistemas propios o sea subsistemas, estos elementos también pueden ser inanimados o sea ni vivientes o dotados de vida o sea los vivientes. Otra de las características de los sistemas son los proceso de conversión los sistemas organizados esta dotados de un proceso de conversión por el cual los elementos del sistema pueden cambiar de estado. El proceso de conversión cambia elementos de entrada en elementos de salida. En un sistema con organización, los procesos de conversión generalmente agregan valor y utilidad a las entradas, al convertirse en salidas. Si el proceso de conversión reduce el valor o utilidad en el sistema, este impone costos e impedimentos. Otra característica importante que identifica a los sistemas son las Entradas y recursos la diferencia entre entradas y recursos es mínima, y depende solo del punto de vista y circunstancia. En el proceso de conversión, las entradas son generalmente los elementos sobre los cuales se aplican los recursos. Por ejemplo, los estudiantes que ingresan al sistema de educación son entradas, en tanto que los maestros son uno de los recursos utilizados en el proceso. Desde un contexto mas amplio, los estudiantes con una educación se tornan recursos, cuando se convierten en el elemento activo de la comunidad o sociedad. Otra característica de los sistemas son las salidas o resultados las salidas son los resultados del proceso de conversión del sistema y se cuentan como resultados, éxitos o beneficios y la satisfaccion.Otra característica sin duda alguna es  el medio tenemos que tener en cuenta que es necesario decidir sobre los límites de los sistemas cuando se estudian sistemas abiertos (vivientes), sistemas que interactúan con otros sistemas. La definición de los límites de sistema determina cuales sistemas se consideran bajo control de quienes toman las decisiones, y cuales deben dejarse fuera de su jurisdicción (conocidos como conocidos o dados). A pesar de donde se implantan los límites del sistema, no pueden ignorarse las interacciones con el medio, a menos que carezca de significado las soluciones adoptadas. Otra característica también son los propósito y función los sistemas inanimados están desprovistos de un propósito evidente. Estos adquieren un propósito o función específicos, cuando entran en relación con otros subsistemas en el contexto de un sistema más grande, por tanto la conexiones entre subsistemas, y entre subsistemas y el sistema total, son de considerable importancia en el estudio de sistemas por que asi estos sistemas y subsistemas adquieren su propósito y sus funciones. Otra característica son sus atributos los sistemas, subsistemas, y sus elementos, están dotados de atributos o propiedades. Los atributos pueden ser cuantitativos o cualitativos. Esta diferenciación determina el enfoque a utilizarse para medirlos. Los atributos cualitativos ofrecen mayor dificultad de definición y medición que su contraparte los atributos cuantitativos. Los atributos en ocasiones se usan como sinónimos a mediciones de eficacia, aunque deben diferenciarse el atributo y su medición. Otra característica son sus metas y sus objetivos la identificación de metas y objetivos es de suma importancia para el diseño de sistemas. En la medida en que se disminuye el grado de abstracción, los enunciados de propósito serán mejor definidos y mas operativos. Las mediciones de eficacia regulan el grado en que se satisfacen los objetivos de sistemas. Estas representan el valor de atributos de sistemas. Otra característica son sus Componentes, programas y misiones en sistemas orientados a objetivos, se organiza el proceso de conversión alrededor del concepto de componentes, programas o misiones, el cual consiste de elementos compatibles reunidos para trabajar hacia un objetivo definido. En la mayoría de los casos, los límites de los componentes no coinciden con los límites de la estructura organizacional, una cuestión bastante significativa para el enfoque de sistemas. Otra característica son su administración, agentes y autores de decisiones las acciones y decisiones que tienen lugar en el sistema, se atribuyen o asignan a administradores, agentes y autores de decisiones cuya responsabilidad es la guía del sistema hacia el logro de sus objetivos. Primordialmente nos interesamos en el estudio de organizaciones o sistemas organizados orientados a un objetivo, es decir, en aquellos que poseen un propósito o función definibles, y se esfuerzan hacia uno o mas objetivos o resultados observables y medibles. Otra característica son su estructura la noción de estructura se relaciona con la forma de las relaciones que mantienen los elementos del conjunto. La estructura puede ser simple o compleja, dependiendo del número y tipo d interrelaciones entre l partes del sistema. Los sistemas complejos involucran jerarquías que son niveles ordenados, partes, o elementos de subsistemas. Los sistemas funcionan a largo plazo, y la eficacia con la cual se realizan depende del tipo y forma de interrelaciones entre los componentes del sistema.

La ultima característica pero también de suma importancia son los Estados y flujos es usual distinguir entre estados y flujos de sistemas. El estado de un sistema se define por las propiedades que muestran sus elementos en un punto en el tiempo. La condición de un sistema esta dada por el valor de los atributos que lo caracterizan. Los cambios de un estado a otro por los que pasan los elementos del sistema dan surgimiento a flujos, los cuales se definen en términos de tasas de cambio del valor de los atributos de sistema. La conducta puede interpretarse como cambios en los estados de sistema sobre el tiempo. Podemos decir que todas estas características hacen que nosotros podamos identificar a un sistema  mas fácilmente y saber fácilmente cuando cumple estas características que tipo de sistema es, si es un sistema o subsistema o si es sistema abierto o cerrado viviente o no.





2.4.-IDEAS PARTICULARES SOBRE SISTEMAS



Las ideas de la teoría general de sistemas han influido en diferentes ámbitos y sistemas como por ejemplo en los aspectos matemáticos el lenguaje de las matemáticas esta eminentemente calificado para servir como el lenguaje de la teoría general de sistemas debido precisamente a que este lenguaje esta dedicado en su contenido y expresión solamente a las características estructurales (de relación) de una situación. Pueden declararse dos sistemas similares, según el grado en el cual estén relacionados sus modelos matemáticos. Estos son idénticos si las estructuras matemáticas son isomorfas. Por tanto, el uso de las matemáticas cambia el énfasis del contenido a la estructura de los eventos. Stafford Beer ha expresado mejor que nadie la necesidad de un metalenguaje, es decir un lenguaje de orden elevado, en el cual se puedan estudiar proposiciones escritas en un lenguaje de bajo orden.



 A fin de ejercer control sobre un sistema a un nivel dado, debe existir un sistema con un orden de lógica más elevado para ejercer dicha regulación y en forma correspondiente, un lenguaje o código de un orden más elevado que el de aquel sistema en el cual las decisiones y mandatos del sistema se expresan. Las matemáticas representan el metalenguaje ideal en el sentido que Beer da a esta palabra: “las propiedades generales de los sistemas se describen en un lenguaje independiente de la naturaleza especifica de los sistemas”. La cibernética, la ciencia de la comunicación y control, es un ejemplo de una teoría matemática rigurosa, que se ha aplicado al análisis de todos los fenómenos en los cuales están involucradas conductas organizadas, específicamente de búsqueda de objetivos. También ha servido para extender estos métodos al estudio de la complejidad organizada a través de disciplinas.



Otra idea muy particular es la de los sistemas políticos

“Un sistema político esta constituido por la relaciones que una sociedad busca regular mediante el ejercicio del poder publico, y toda actividad política esta dirigida a la regulación de algún conjunto de relaciones en marcha, ya sea internas al sistema y controladas por el regulador o externas, entre el sistema y otros sistemas. Dado que el conocimiento y la información  son la esencia de la comunicación, estos desempeñan un papel esencial en la actividad política, y por tanto en la reglamentación de las relaciones humanas. Sin duda el sistema político puede verse en términos dinámicos, y sus procesos interpretados como un flujo continuo e interrelacionado de conducta. La viabilidad de sistema político puede comprenderse si se ve como un sistema abierto, que se adapta, responde, y compite con las perturbaciones, influencias y tensiones que imponen todos sus sistemas y subsistemas componentes, sobre sus estados de equilibrio.



Los sistemas vivientes según J.G. Miller

La teoría de sistemas vivientes se interesa en siete niveles de sistemas vivientes: célula, órgano, organismo, grupo, organización, sociedad y sistema supranacional. Los sistemas a cada nivel tienen componentes del nivel inferior y, como en todas las jerarquías apropiadas, se encuentran componentes del nivel superior, por ejemplo los organismos se componen de órganos, los que a su vez son componentes de grupos, etc. A fin de continuar viviendo los sistemas a todos los niveles procesan materiales, energía e información. Debido a su origen evolucionarlo común  y a necesidades físicas comunes, todos los sistemas vivientes en la tierra realizan ciertos procesos fundamentales Miller identifica 19 de estos procesos, cada uno tiene una o mas funciones esenciales a la existencia continua de los sistemas individual y/o de las especies. Un tipo dado de sistema debe bien poseer componentes estructurales para cada uno de estos subsistemas, o debe depender de otros sistemas vivientes para que lo contengan, sin embargo a fin de ser un sistema viviente, este debe tener un sistema determinante o ejecutivo.



Podemos concluir diciendo que tene en nuestro entorno muchos tipos de sistemas y que hasta en lo mas minimo podemos encontrar un sistema pues ya mencionamos anteriormente cuales son sus características y como los podemos identificarlos por mencionar las ideas principales que tenemos en forma de sistemas una de los mas destacados son los sistemas políticos, los sistemas vivientes y los sistemas con aspecto matemáticos ,estos últimos son los mas utilizados.



BIBLIOGRAFIA



1.       Teoría general de sistemas. Jhon P. Van Gigch. Editorial Trillas. Págs. 26-29



2.       Teoría general de sistemas aplicada a la solución integral de problemas. Emilio Latorre Estrada. Editorial Universidad del valle. Págs. 34-37



3.       El enfoque de sistemas. Miguel Ángel Cárdenas. Editorial Limusa. Págs. 21-30



4.       www.enterpreneur.com



5.       www.insignition.com



6.       www.enfoquesistémico.com

domingo, 11 de septiembre de 2011

2.1.-DEFINICION DE SISTEMA

DEFINICION DE SISTEMA.-
Un sistema (del latín systema, proveniente del griego σύστημα) es un objeto compuesto cuyos componentes se relacionan con al menos algún otro componente; puede ser material o conceptual. Todos los sistemas tienen composición, estructura y entorno, pero sólo los sistemas materiales tienen mecanismo, y sólo algunos sistemas materiales tienen figura (forma). Según el sistemismo, todos los objetos son sistemas o componentes de algún sistema. Por ejemplo, un núcleo atómico es un sistema material físico compuesto de protones y neutrones relacionados por la interacción nuclear fuerte; una molécula es un sistema material químico compuesto de átomos relacionados por enlaces químicos; una célula es un sistema material biológico compuesto de orgánulos relacionados por enlaces químicos no-covalentes y rutas metabólicas; una corteza cerebral es un sistema material psicológico (mental) compuesto de neuronas relacionadas por potenciales de acción y neurotransmisores; un ejército es un sistema material social y parcialmente artificial compuesto de personas y artefactos relacionados por el mando, el abastecimiento, la comunicación y la guerra; el anillo de los números enteros es un sistema conceptual algebraico compuesto de números positivos, negativos y el cero relacionados por la suma y la multiplicación; y una teoría científica es un sistema conceptual lógico compuesto de hipótesis, definiciones y teoremas relacionados por la correferencia y la deducción (implicación).

MAPA MENTAL.-1.5-LA PROPOSICION DE LOS SISTEMAS LA ING DE SISTEMAS Y EL ENFOQUE DE SISTEMAS.

MAPA MENTAL.-1.4-ORIGENES,FUENTES Y ENFOQUES DE LA TGS

MAPA MENTAL.-1.1-LA REVOLUCION QUE NOS RODEA

viernes, 9 de septiembre de 2011

1.2.-PROBLEMAS PARA LA CIENCIA

1.2 Problemas para la ciencia

Así como anteriormente se podía hablar de "el método" de la ciencia, el gran desarrollo de muchas disciplinas científicas ha hecho que los filósofos de la ciencia comiencen a hablar de "los métodos", ya que no es posible identificar un método único y universalmente válido. La idea heredada de la física clásica de que todo es reducible a expresiones matemáticas ha cedido terreno ante situaciones nuevas como la Teoría del caos o los avances de la biología. Por otro lado han desaparecido cuestiones que llegaron a cubrir cientos de páginas y generaron grandes controversias. Quizás el caso más flagrante sea el del Problema de la demarcación, centrado en la distinción (demarcación) entre ciencia y otros conocimientos no científicos. Prácticamente el tema desaparece después de Popper y es seguido en España por Gustavo Bueno en su teoría del cierre categorial

La filosofía de la ciencia es la investigación sobre la naturaleza del conocimiento científico y la práctica científica.

La filosofía de la ciencia se ocupa de saber cómo se desarrollan, evalúan y cambian las teorías científicas, y de saber si la ciencia es capaz de revelar la verdad de las entidades ocultas y los procesos de la naturaleza. Son filosóficas las dos proposiciones básicas que permiten construir la ciencia:

  • La naturaleza es regular, uniforme e inteligible.
  • El hombre es capaz de comprender la inteligibilidad de la naturaleza.

Estos dos presupuestos metafísicos no son cuestionados en la actualidad. Lo que intenta la filosofía de la ciencia es explicar cosas como:

  • la naturaleza y la obtención de las teorías y conceptos científicos;
  • la relación de éstos con la realidad;
  • cómo la ciencia explica, predice y controla la naturaleza;
  • los medios para determinar la validez de la información;
  • la formulación y uso del método científico;
  • los tipos de razonamiento utilizados para llegar a conclusiones;
  • las implicaciones de los diferentes métodos y modelos de ciencia.

En definitiva es establecer las condiciones en las que un conocimiento pueda ser considerado válido, es decir, aceptado como verdadero por la comunidad científica.

Gran parte de la filosofía de la ciencia es indisociable de la gnoseología, la teoría del conocimiento, un tema que ha sido considerado por casi todos los filósofos.

Algunos científicos han mostrado un vivo interés por la filosofía de la ciencia y unos pocos, como Galileo Galilei, Isaac Newton y Albert Einstein, han hecho importantes contribuciones. Numerosos científicos, sin embargo, se han dado por satisfechos dejando la filosofía de la ciencia a los filósofos y han preferido seguir haciendo ciencia en vez de dedicar más tiempo a considerar cómo se hace la ciencia. Dentro de la tradición occidental, entre las figuras más importantes anteriores al siglo XX destacan Aristóteles, René Descartes, John Locke, David Hume, Immanuel Kant y John Stuart Mill.

La filosofía de la ciencia no se denominó así hasta la formación del Círculo de Viena, a principios del siglo XX. En la misma época, la ciencia vivió una gran transformación a raíz de la teoría de la relatividad y de la mecánica cuántica. En la filosofía de la ciencia actual las grandes figuras son, sin lugar a dudas, Karl R. Popper, Thomas Kuhn, Imre Lakatos y Paul Feyerabend.

Para Ronald N. Giere (1938) el propio estudio de la ciencia debe ser también una ciencia: "La única filosofía de la ciencia viable es una filosofía de la ciencia naturalizada". Esto es así porque la filosofía no dispone de herramientas apropiadas para el estudio de la ciencia en profundidad. Giere sugiere, pues, un reduccionismo en el sentido de que para él la única racionalidad legítima es la de la ciencia. Propone su punto de vista como el inicio de una disciplina nueva, una epistemología naturalista y evolucionista, que sustituirá a la filosofía de la ciencia actual.

Larry Laudan (1941) propone sustituir el que él denomina modelo jerárquico de la toma de decisiones por el modelo reticulado de justificación. En el modelo jerárquico los objetivos de la ciencia determinan los métodos que se utilizarán, y éstos determinan los resultados y teorías. En el modelo reticulado se tiene en cuenta que cada elemento influye sobre los otros dos, la justificación fluye en todos los sentidos. En este modelo el progreso de la ciencia está siempre relacionado con el cambio de objetivos, la ciencia carece de objetivos estables.

El debate sobre el realismo de la ciencia no es nuevo, pero en la actualidad aún está abierto. Bas C. Van Fraasen (1941), empirista y uno de los principales oponentes del realismo, opina que todo lo que se requiere para la aceptación de las teorías es su adecuación empírica. La ciencia debe explicar lo observado deduciéndolo de postulados que no necesitan ser verdaderos más que en aquellos puntos que son empíricamente comprobables. Llega a decir que "no hay razón para afirmar siquiera que existe una cosa tal como el mundo real". Es el empirismo constructivo, para el que lo decisivo no es lo real, sino lo observable.

Laudan y Giere presentan una postura intermedia entre el realismo y el subjetivismo estrictos. Laudan opina que es falso que sólo el realismo explique el éxito de la ciencia. Giere propone que hay ciencias que presentan un alto grado de abstracción, como la mecánica cuántica, y utilizan modelos matemáticos muy abstractos. Estas teorías son poco realistas. Las ciencias que estudian fenómenos naturales muy organizados como la biología molecular, utilizan teorías que son muy realistas. Por ello no se puede utilizar un criterio uniforme de verdad científica.

Rom Harré (1927) y su discípulo Roy Bhaskar (1944) desarrollaron el realismo crítico, un cuerpo de pensamiento que quiere ser el heredero de la Ilustración en su lucha contra los irracionalismos y el racionalismo reduccionista. Destacan que el empirismo y el realismo conducen a dos tipos diferentes de investigación científica. La línea empirista busca nuevas concordancias con la teoría, mientras que la línea realista intenta conocer mejor las causas y los efectos. Esto implica que el realismo es más coherente con los conocimientos científicos actuales.

Dentro de la corriente racionalista de oposición al neopositivismo encontramos a Mario Bunge (1919). Analiza los problemas de diversas epistemologías, desde el racionalismo crítico popperiano hasta el empirismo, el subjetivismo o el relativismo. Bunge es realista crítico. Para él la ciencia es falibilista (el conocimiento del mundo es provisional e incierto), pero la realidad existe y es objetiva. Además se presenta como materialista , pero para soslayar los problemas de esta doctrina apostilla que se trata de un materialismo emergentista.

Desde el punto de vista de la teoría general de sistemas, Se les ha confiado a las ciencias sociales, la responsabilidad de resolver el nudo Gordiano de la sociedad. Con el fin de lograr algún avance, estos deben hacer que converjan todas las áreas del conocimiento humano. Al lado del paradigma de sistemas, el enfoque de sistemas proporciona un procedimiento por el cual pueden planearse, diseñarse, evaluarse e implantarse soluciones para problemas de sistemas.



El concepto de sistemas proporciona un marco común de referencia para este estudio: "Implica una fuerte orientación hacia el criterio final de realización o salida de un conjunto total de recursos y componentes, reunidos para servir un propósito especifico. La justificación de la TGS, gira alrededor de la premisa de que todos los siste­mas no solo muestran una notable similitud de estructura y organización, sino que también  reflejan problemas, dilemas y temas comunes.



La siguiente es una lista de las principales preguntas que se formulan:

El problema de tratar la complejidad.

El problema de la optimización y suboptimizacion.

El dilema entre centralización y descentralización.

El problema de la cuantificación y la medición.

El problema de integración de la racionalidad técnica, social, económica, legal y política.

El problema de estudiar sistemas "rígidos" contra "flexibles".

El problema de teoría y acción.

El problema de la ética y moralidad de los sistemas.

El problema de la implantación.

El problema del consenso.

El problema del incrementalismo y la innovación.

El problema de la innovación y el control.

El problema de buscar el "ideal de la realidad" mientras se establece "la realidad de lo ideal".

El problema del planeamiento.

El problema del aprendizaje y la pericia.


1.1.-LA REVOLUCION QUE NOS RODEA

La vida en sociedad esta organizada alrededor de sistemas complejos en los cuales y por los cuales, el hombre trata de proporcionar alguna apariencia de orden a su universo. La vida esta organizada alrededor de instituciones de todas clases: algunas son estructuradas por el hombre, otras han evolucionado, según parece sin un diseño convenido. Algunas instituciones, como la familia, son pequeñas y manejables; otras, como la política o la industria, son de envergadura nacional y cada día se vuelven más complejas. Algunas son de propiedad privada y otras pertenecen al dominio público. En cada clase social, cualquiera que sea nuestro trabajo tenemos que enfrentarnos a organizaciones y sistemas.



Un vistazo rápido a esos sistemas revelan que comparten una característica: La complejidad. Según la opinión general, la complejidad es el resultado de la multiplicidad y embrollo de la interacción del hombre en los sistemas. Visto por separado, el hombre es ya una entidad compleja.



Colocado en el contexto de la sociedad, el hombre esta amenazado por la complejidad de sus propias organizaciones. El hombre también esta amenazada por las jurisdicciones fragmentadas y gradualmente por las autoridades que han sido estructuradas dentro de los sistemas durante siglos de negligencia.



En una era en que disminuyen cada día los recursos naturales y energéticos no renovables, y de grandes catástrofes ecológicas y naturales que toman proporciones nacionales o mundiales, ¿Cómo podemos intentar resolver esos problemas en niveles locales o incluso regionales? ¿Qué hacer cuando esos recursos energéticos y naturales no son aprovechados adecuadamente? cuando además de ello el medio ambiente es castigados por la explotación en nombre de esta civilización e industrialización mundial? Es necesario tomar un enfoque mas holistico de los sistemas, en lugar de proponer pequeñas o asiladas soluciones a todas estas situaciones, que solo abarcan una parte del problema y de los sistemas.



Los recursos no solo están disminuyendo sino que están mal distribuidos, entendiendo por recursos tanto naturales como económicos y humanos, algunas naciones lo poseen todo y otras también poseen bastos recursos pero no poseen recursos económicos que alivien sus grandes problemas, en algunos países el agua es asunto de vida o muerte y en otros se usa para el aseo de artículos superfluos y no para la supervivencia humana. Sin embargo grandes pensadores y científicos han planteado que en un futuro próximo las guerras del futuro serán por este vital líquido: el Agua.



Se hace obvio que para resolver esta compleja problemática se hace necesario tener una amplia visión que abarque el espectro total del problema, el enfoque de sistemas es la filosofía del manejo de sistemas por los cuales puede montarse este esfuerzo, los problemas de sistemas requieran soluciones de sistemas, los métodos antiguos de resolver problemas ya no son suficientes, debemos pensar en substituirlos por planteamientos de solución nuevos, que involucren diferentes disciplinas del saber y el conocimiento humano, debemos aceptar una nueva forma de pensamiento, una filosofía practica y una metodología nueva.



A pesar de todo el panorama anterior se hace necesario el plantear que la civilización actual a traviesa por una etapa como pocas veces a lo largo del quehacer humano se ha tenido, es una etapa que ofrece circunstancias diferentes, en los últimos 30 años se han incorporado nuevas ciencias que anteriormente no se habían desarrollado, tres son los actores que actualmente moldean nuestra evolución: el gran avance tecnológico en las comunicaciones, el gran avance científico en diferentes áreas del saber humano, y un gran fenómeno socioeconómico: la globalización mundial.



En conjunto han detonado una nueva forma de organización mundial, sus alcances aun están por definirse, sin embargo es obvio que este no se detendrá, sufrirá cambios, mutaciones evoluciones o transformaciones, pero es irreversible en si mismo.



El Internet es una herramienta poderosísima tanto de comunicación como de transmisión del saber y el conocimiento, ha roto las barreras geográficas y físicas e incluso de idiomas y culturas, es en si mismo un sistema que aun necesita conocerse a profundidad, moldea incluso comportamientos sociales, y estos son diferentes en relación a la cultura, país o región que lo usa, su influencia económica y la manera de hacer negocios es también nueva y compleja, los fenómenos humanos no escapan  a este sistema.



Las comunicaciones son otro gran tema de complejidad, su alcance no solo es local, regional, sino incluso de tipo espacial, el uso de satélites ha permitido el poder comunicar en tiempo real acontecimientos y sucesos de todo tipo que a su vez han generado y generan  a cada minuto cambios a nivel mundial, su campo va desde el simple entretenimiento hasta acciones de guerra, por lo que su uso y avance tendrán un modelo de comportamiento en las futuras generaciones que aun no termina ni siquiera de predecirse.



La computadora es la herramienta indispensable del siglo 21, en ella se conjugan los dos anteriores conceptos, es como se dice una herramienta sin la cual no se puede concebir hoy en día nuestra civilización, su presencia abarca ámbitos tan disimbolos como el hogar y puede ser un hogar humilde o una gran mansión, o en ámbitos de la medicina, pasando por la industria, los negocios, el entretenimiento, suplirá en algunos años a la televisión, el invento mas impactante de masas del siglo pasado, las predicciones mas nuevas afirman que llegaran a formar parte como componentes del cuerpo humano.



El comercio es el tema que cierra este circulo nuevo en la evolución humana, se le ha denominado a este fenómeno globalización mundial del comercio, entre sus principales características esta el libre mercado y transito de bienes y servicios entre los diferentes países del mundo, negociándose conceptos como impuestos, aranceles y ajustando nuevos patrones de control de calidad a los productos que se comercializan. Este fenómeno a traído consigo nuevos y complejos problemas, entre los principales esta la migración de personas entre países en busca de mejores incentivos económicos y mejoras sociales, esto a su vez a generado el derrumbe de sectores industriales y la creación de otros en regiones distantes del mundo, la mano de obra en las industrias y servicios ha tomado una  nueva perspectiva, requiriéndose mas especialización y modificando patrones de comportamiento laboral, a nacido una nueva filosofía empresarial, se han roto y creado nuevos paradigmas.



En suma tenemos una nueva revolución, pero de una magnitud tal, que todos los sistemas conocidos por el hombre han sufrido impacto en mayor o menor medida, incluso en algunos casos se han hecho modificaciones o evoluciones dentro de los mismos. Se requiere entonces un nuevo enfoque, mas holistico, en consonancia con las demandas que presentan esta complejidad, y que de respuesta y certidumbre al nuevo siglo 21.



Bibliografía: Teoría General de sistemas John P. Van Gigch, Págs. 15, 16.